首页> 外文OA文献 >Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long wavelength infrared detectors
【2h】

Novel Si(1-x)Ge(x)/Si heterojunction internal photoemission long wavelength infrared detectors

机译:新型Si(1-x)Ge(x)/ Si异质结内部光发射长波长红外探测器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There is a major need for long-wavelength-infrared (LWIR) detector arrays in the range of 8 to 16 microns which operate with close-cycle cryocoolers above 65 K. In addition, it would be very attractive to have Si-based infrared (IR) detectors that can be easily integrated with Si readout circuitry and have good pixel-to-pixel uniformity, which is critical for focal plane array (FPA) applications. Here, researchers report a novel Si(1-x)Ge(x)/Si heterojunction internal photoemission (HIP) detector approach with a tailorable long wavelength infrared cutoff wavelength, based on internal photoemission over the Si(1-x)Ge(x)/Si heterojunction. The HIP detectors were grown by molecular beam epitaxy (MBE), which allows one to optimize the device structure with precise control of doping profiles, layer thickness and composition. The feasibility of a novel Si(1-x)Ge(x)/Si HIP detector has been demonstrated with tailorable cutoff wavelength in the LWIR region. Photoresponse at wavelengths 2 to 10 microns are obtained with quantum efficiency (QE) above approx. 1 percent in these non-optimized device structures. It should be possible to significantly improve the QE of the HIP detectors by optimizing the thickness, composition, and doping concentration of the Si(1-x)Ge(x) layers and by configuring the detector for maximum absorption such as the use of a cavity structure. With optimization of the QE and by matching the barrier energy to the desired wavelength cutoff to minimize the thermionic current, researchers predict near background limited performance in the LWIR region with operating temperatures above 65K. Finally, with mature Si processing, the relatively simple device structure offers potential for low-cost producible arrays with excellent uniformity.
机译:迫切需要8至16微米范围内的长波红外(LWIR)检测器阵列,这些阵列可与65 K以上的闭环低温冷却器一起使用。此外,具有硅基红外( IR)检测器可轻松与Si读出电路集成,并具有良好的像素间一致性,这对于焦平面阵列(FPA)应用至关重要。在这里,研究人员报告了一种新颖的Si(1-x)Ge(x)/ Si异质结内部光发射(HIP)检测器方法,该方法基于Si(1-x)Ge(x)上的内部光发射具有可定制的长波长红外截止波长)/ Si异质结。 HIP检测器通过分子束外延(MBE)生长,这使得人们可以通过精确控制掺杂分布,层厚度和成分来优化器件结构。新型Si(1-x)Ge(x)/ Si HIP检测器的可行性已在LWIR区域以可定制的截止波长进行了证明。获得的波长为2到10微米的光响应的量子效率(QE)大约为1。这些未优化的设备结构中只有1%。通过优化Si(1-x)Ge(x)层的厚度,成分和掺杂浓度,以及通过配置检测器以实现最大吸收(例如使用H2O),可以显着提高HIP检测器的QE。空腔结构。通过优化QE并通过将势垒能量与所需的波长截止进行匹配以最大程度地降低热电子电流,研究人员预测,在工作温度高于65K时,LWIR区域的性能接近本底受限。最后,利用成熟的硅工艺,相对简单的器件结构为低成本,可生产且具有出色均匀性的阵列提供了潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号